

The equation used to define iD depends on relationship between v_{DS} and v_{OV} :

■ When $v_{DS} \ll v_{OV}$ (i.e., the small v_{DS} model)

$$i_D = \left[\left(\mu_n C_{ox} \left(\frac{W}{L} \right) v_{OV} \right) \right] v_{DS} \tag{1}$$

■ When $v_{DS} < v_{OV}$ (i.e., the large v_{DS} model)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$

$$= k'_{n} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$
(2)

■ When $v_{DS} \ge v_{OV}$ (channel pinch-off and current saturation)

$$D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) \tag{3}$$

The equation used to define iD depends on relationship between v_{DS} and v_{OV} :

■ When $v_{DS} \ll v_{OV}$ (i.e., the small v_{DS} model)

$$i_D = \left[\left(\mu_n C_{ox} \left(\frac{W}{L} \right) v_{OV} \right) \right] v_{DS} \tag{1}$$

■ When $v_{DS} < v_{OV}$ (i.e., the large v_{DS} model)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$

$$= k'_{n} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$
(2)

■ When $v_{DS} \ge v_{OV}$ (channel pinch-off and current saturation)

$$D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) \tag{3}$$

The equation used to define iD depends on relationship between v_{DS} and v_{OV} :

■ When $v_{DS} \ll v_{OV}$ (i.e., the small v_{DS} model)

$$i_D = \left[\left(\mu_n C_{ox} \left(\frac{W}{L} \right) v_{OV} \right) \right] v_{DS} \tag{1}$$

■ When $v_{DS} < v_{OV}$ (i.e., the large v_{DS} model)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$

$$= k'_{n} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$
(2)

■ When $v_{DS} \ge v_{OV}$ (channel pinch-off and current saturation)

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) \tag{3}$$

The equation used to define iD depends on relationship between v_{DS} and v_{OV} :

■ When $v_{DS} \ll v_{OV}$ (i.e., the small v_{DS} model)

$$i_D = \left[\left(\mu_n C_{ox} \left(\frac{W}{L} \right) v_{OV} \right) \right] v_{DS} \tag{1}$$

■ When $v_{DS} < v_{OV}$ (i.e., the large v_{DS} model)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$

$$= k'_{n} \left(\frac{W}{L} \right) \left[V_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}$$
(2)

■ When $v_{DS} \ge v_{OV}$ (channel pinch-off and current saturation)

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) \tag{3}$$

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - \blacksquare This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - \blacksquare This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - \blacksquare This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - \blacksquare This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

- In previous lectures, we assume (in saturation) iD is independent of v_{DS} .
- Therefore, a change in v_{DS} has no effect on i_D .
 - \blacksquare This implies that the incremental resistance R_S is infinite
 - It is based on the idealization that, once the n-channel is pinched off, changes in v_{DS} will have no effect on i_D .
 - The problem is that, in practice, this is not completely true.
- In reality, the drift current increases, and i_D increases with increasing v_{DS}

What effect does increasing v_{DS} has on the n-channel once pinch-off has occurred?

- It will cause the pinch-off point to move slightly away from the drain and create new depletion region.
- Voltage across the (now shorter) channel will remain at v_{OV} .
- However, the additional voltage applied at v_{DS} will be seen across the "new" depletion region.

What effect will increased v_{DS} has on n-channel once pinch-off has occurred?

- This voltage accelerates electrons as they reach the drain end, and sweep them across the "new" depletion region.
- However, at the same time, the length of the n-channel will decrease. This is known as channel length modulation.

- When $v_{DS} > V_{OV}^2$, the depletion region around the drain region grows in size.
- With depletion-layer widening, the channel length is in effect reduced, from L to $L \Delta L$, a phenomenon known as channel-length modulation.

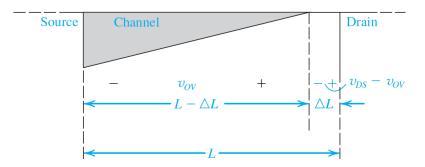


FIG 1. Early Effect—Finite Output Resistance

increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move slightly away from the drain; thus, reducing the effective channel lengthy by ΔL

- When $v_{DS} > V_{OV}^2$, the depletion region around the drain region grows in size.
- With depletion-layer widening, the channel length is in effect reduced, from L to $L \Delta L$, a phenomenon known as channel-length modulation.

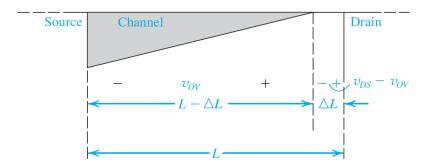


FIG 1. Early Effect—Finite Output Resistance

increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move slightly away from the drain; thus, reducing the effective channel lengthy by ΔL

- As the channel length becomes shorter, the electric field, which is proportional to vDS/L, becomes larger.
- Since i_D is inversely proportional to the channel length, i_D increases with v_{DS} .

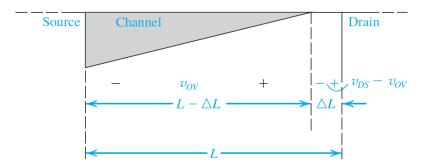


FIG 2. Early Effect—Finite Output Resistance

increasing v_{DS} beyond v_{DSsat} causes the channel pinch-off point to move slightly away from the drain; thus, reduces the effective channel lengthy by ΔL

■ In reality, the drift current increases, and i_D increases with increasing v_{DS}

$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})$$
 (4)

- λ is a device parameter with the units of V^{-1} , the value of which depends on manufacturer's design and manufacturing process. λ is much larger for newer tech's
- The value of λ depends both on the process technology used to fabricate the device and on the channel length L.
- In short, we can draw a straight line between V_{Δ} and saturation.

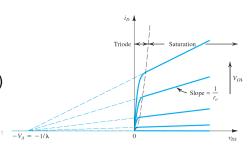


FIG 3. Early Effect—Finite Output Resistance

In reality, the drift current increases, and i_D increases with increasing v_{DS}

$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})$$
 (4)

- λ is a device parameter with the units of V^{-1} , the value of which depends on manufacturer's design and manufacturing process. λ is much larger for newer tech's
- The value of λ depends both on the process technology used to fabricate the device and on the channel length L.
- In short, we can draw a straight line between V_{Δ} and saturation.

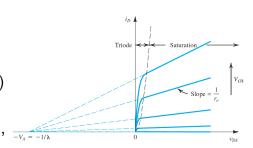


FIG 3. Early Effect—Finite Output Resistance

In reality, the drift current increases, and i_D increases with increasing v_{DS}

$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})$$
 (4)

- λ is a device parameter with the units of V^{-1} , the value of which depends on manufacturer's design and manufacturing process. λ is much larger for newer tech's
- The value of λ depends both on the process technology used to fabricate the device and on the channel length L.
- In short, we can draw a straight line between V_{Δ} and saturation.

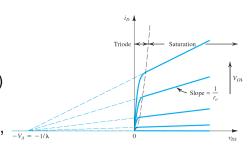


FIG 3. Early Effect—Finite Output Resistance

In reality, the drift current increases, and i_D increases with increasing v_{DS}

$$i_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})$$
 (4)

- λ is a device parameter with the units of V^{-1} , the value of which depends on manufacturer's design and manufacturing process. λ is much larger for newer tech's
- The value of λ depends both on the process technology used to fabricate the device and on the channel length L.
- In short, we can draw a straight line between V_{Δ} and saturation.

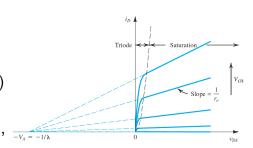


FIG 3. Early Effect—Finite Output Resistance

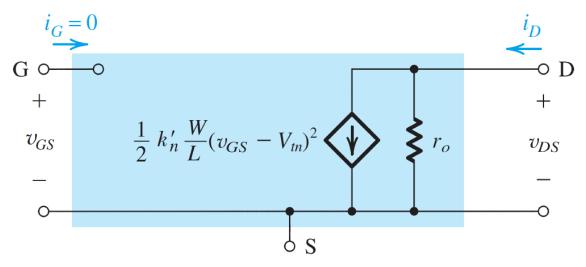


FIG 4. Large-Signal Equivalent Model of the n-channel MOSFET in saturation, incorporating the output resistance r_0 . The output resistance models the linear dependence of i_D on v_{DS} and is given by Equation (4). Please note the addition of finite output resistance r_0 .

Note that r_0 is the 1/slope of i_D vs v_{DS} curve

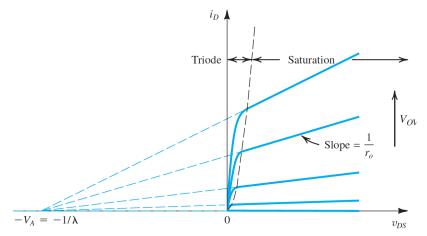


FIG 5. Early Effect—Finite Output Resistance

■ Note that r_o is the 1/slope of i_D vs v_{DS} curve

$$r_0 \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1} \tag{5}$$

■ Combining Equation (4) and Equation (5), we have

$$\frac{\partial i_D}{\partial v_{DS}} = \frac{\partial}{\partial v_{DS}} \frac{1}{2} k'_n \left(\frac{W}{L} \right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})
= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{ov}^2 \lambda$$
(6)

■ Thus, the output resistor is defined as shown in Equation (7)

$$r_{o} = \left[\lambda \frac{k'_{n}}{2} \frac{W}{L} (V_{GS} - V_{tn})^{2}\right]^{-1}$$

$$= \frac{1}{\lambda i_{D}}$$

$$= \frac{V_{A}}{i_{D}}$$
(7)

■ Note that r_o is the 1/slope of i_D vs v_{DS} curve

$$r_0 \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1} \tag{5}$$

■ Combining Equation (4) and Equation (5), we have

$$\frac{\partial i_D}{\partial v_{DS}} = \frac{\partial}{\partial v_{DS}} \frac{1}{2} k_n' \left(\frac{W}{L} \right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})
= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{ov}^2 \lambda$$
(6)

■ Thus, the output resistor is defined as shown in Equation (7)

$$r_{o} = \left[\lambda \frac{k'_{n}}{2} \frac{W}{L} (V_{GS} - V_{tn})^{2}\right]^{-1}$$

$$= \frac{1}{\lambda i_{D}}$$

$$= \frac{V_{A}}{L}$$
(7)

■ Note that r_o is the 1/slope of i_D vs v_{DS} curve

$$r_0 \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1} \tag{5}$$

■ Combining Equation (4) and Equation (5), we have

$$\frac{\partial i_D}{\partial v_{DS}} = \frac{\partial}{\partial v_{DS}} \frac{1}{2} k_n' \left(\frac{W}{L} \right) (v_{GS} - V_{tn})^2 (1 + \lambda v_{DS})
= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} v_{ov}^2 \lambda$$
(6)

■ Thus, the output resistor is defined as shown in Equation (7)

$$r_{o} = \left[\lambda \frac{k'_{n}}{2} \frac{W}{L} (V_{GS} - V_{tn})^{2}\right]^{-1}$$

$$= \frac{1}{\lambda I_{D}}$$

$$= \frac{V_{A}}{I_{D}}$$
(7)

The end